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J. Phys. A: Math. Gen. 14 (1981) 2149-2162. Printed in Great Britain 

The generalised drone-fermion method and the 
semi-invariant approach for spin systems 

G C Psaltakis and M G Cottam 
Department of Physics, University of Essex, Colchester CO4 3SQ, England 

Received 28 November 1980 

Abstract. An analysis is carried out in order to establish for spin systems the formal 
connection between a recent generalisation of the drone-fermion method and semi- 
invariant techniques (such as employed by Vaks, Larkin and Pikin). A linked cluster 
expansion in terms of the semi-invariants of any time-ordered cumulant spin average is 
proved as a consequence of the usual linked cluster theorem for fermion operators. The 
most important semi-invariants are evaluated for any spin value S given by (2.9 i 1) = '", 
n = 1 ,2 ,3 , .  . . , using a diagrammatic induction procedure based on conventional 
diagrammatic rules for fermion operators. The ultimats diagrammatic rules in both 
methods are shown to be equivalent. 

1. Introduction 

In a recent paper (Psaltakis and Cottam 1980, hereafter referred to as I) the authors 
have generalised the usual spin S = $ drone-fermion representation (Mattis 1965, 
Spencer 1968) to any spin value S satisfying 

(2s + 1) = 2" ( n  = 1, 2) 3, . * .)* (1.1) 

This representation assigns two drone-fermion states to each physical spin state, and 
so effectively allows both Wick's theorem and the linked cluster theorem to be 
employed in a conventional diagrammatic perturbation technique. Explicitly, the 
representation can be expressed as (see I) 

S ' =  f 2m-1(c;cm-9), 1 

m = l  

where 
4=d+d '  

and c, (m = 1,2,. . . , n )  and d are mutually anticommuting fermion operators. The 
positive definite operators AL are given by 

2 1/2 

A: = [ 4"-' - ( f 2&-l(c:ck -$)) ] (m = 1,2,. . . , n) .  
k = m + l  
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The purpose of this paper is to establish the formal connection between the 
generalised drone-fermion method and the semi-invariant techniques of Stinchcombe 
etal(1963) and Vaks etaI(1968), as applied to the Heisenberg model of a ferromagnet. 
The central concept in the latter techniques is that of the semi-invariants, which are 
defined as unperturbed time-ordered cumulant averages of spin operators. As shown in 
§ 2 of this paper, this kind of average appears naturally also within the context of the 
drone-fermion method and corresponds to n-point vertex functions, The linked cluster 
expansion of any time-ordered cumulant spin average in terms of these vertex functions 
follows as a direct consequence of the usual linked cluster theorem for fermion 
operators (Abrikosov et a1 1965). One of the main problems of the theory consists in 
the actual evaluation of the semi-invariants. In the technique of Vaks er a1 (1968) this is 
achieved, for any spin value S, by a set of diagrammatic rules derived from a 
generalisation of Wick's theorem to spin operators. A clear exposition of this pro- 
cedure was given by Izyuinov and Kassan-Ogly (1970). Nevertheless, as shown in § 3, 
for spin values given by (1.1) one need employ only the usual Wick theorem for fermion 
operators and its resulting diagram technique (Abrikosov et a1 1965) to evaluate the 
most useful semi-invariants, 

In 8 4 a general discussion of the results is given, together with a summary of the 
ultimate diagrammatic rules for developing the perturbation expansion of any time- 
ordered cumulant spin average or of the free energy of the system. 

2. Semi-invariants as n-point vertex functions 

The Heisenberg Hamiltonian X for a ferromagnetic insulator 
X = XO+ X I  where 20 and XI are respectively the Zeeman and 

X"=-h  1 Sf, 
i 

2 -  1 - - 1 2 c v ( r i j ) [S+S;  + SfSf]. 
i j  

can be written as 
Heisenberg terms: 

Denoting by ,?(T) and S " ( r )  the Heisenberg representations of the spin operator 
S" (cy = +, -, z ) ,  with respect to the Hamiltonians 2 and X o  respectively, we may write 
for the time-ordered average of any pair of spin operators the following equation 
(Abrikosov et a1 1965): 

where is the Wick time-ordering operator, the U matrix is given by 

(2.3) 

and the brackets (. . .) and (. . .)o denote thermal averages with respect to X and 20 
respectively. For spin value S given by (1.1) we may use (1.2)-( 1.4) to express the spin 
operators in (2.2) in terms of the fermion operators c,,, . . . , c1, d. However, noting that 
X o  in (2.1) is diagonal in the number operators c;c,, we may apply the linked cluster 
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theorem for fermion operators (Abrikosov et a1 1965) to rewrite (2.2) as 

(2.4) 
where (, . .>Y denotes an average in which only connected contractions with respect to 
the integration variables T;, . . . , T L  are taken into account. From (2.4) we can easily 
conclude that 

(y[(g?l (Ti) -(s?' (TI))>(&' (72) -(gZZ (72)))]) 

where now the average (. . .)?" takes into account connected contractions with respect 
to all 7-variables appearing inside it. Equation (2.5) is readily generalised for 7-ordered 
averages of a product of a larger number of spin operators. In that case the left-haild 
side of (2.5) will in general be the cumulant part of the average. 

Using the fact that RI, equation (2.1), is expressed in terms of the spin operators SS; 
we see that the right-hand side of (2.5) is expanded in terms of 7-ordered averages of the 
form (s(IIy='=, STi (T~)))? connected with interaction linest. Diagrammatically such 
quantities, hereafter referred to as semi-invariants, correspond to n-point vertex 
functions and we shall denote them by 

Equation (2.6) can be written alternatively as 

M ~ l . ~ . ~ n ( T l r l ,  . . . , Tnr,,) = (( fi spL(Ti))) - (2.7) 

where the second term on the right-hand side of (2.7), representing the sum of products 
of all possible semi-invariants of lower order, takes into account all disconnected 
contractions appearing now in the first term. In the form of (2.7), the semi-invariants 
are clearly unperturbed time-ordered cumulant spin averages, and coincide with the 
analogous quantities defined in the techniques of Stinchcombe et a1 (1963) and Vaks et 
a1 (1968). It is to be noted that although in the latter techniques a linked cluster 
expansion in terms of the semi-invariants, valid for any spin value S, can be proved using 
special considerations for spin operators, our proof, valid for any spin value given by 
( l * l ) ,  was based solely on the usual linked cluster theorem for fermion operators. 

The Fourier component in the frequency-momentum representation of an nth- 
order semi-invariant is defined by 

c M>;I,';"M,, , , . M " ' o ~  mk 

i = l  0 ml+mZ+ ...+ mk=n 

I t  

x ~ z 1 ' . , ~ n ( ~ ~ r 1 ,  . . . , Tnrn)  fl exp (iqiri +iqiri) (2.8) 
r l  , . . . , r, i=l 

t The same conclusion applies also to the perturbation expansion of -pF, where F is the free energy of the 
system. 
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where by convention we interpret qi and qi as the boson frequency and momentum 
leaving the aith vertex point. From the form of the unperturbed Hamiltonian 20 in 
(2.1), it follows that we have non-zero connected contractions in (2.6) only when 
rl = . . . = r,, and thus (2.8) can be written as 

(2.9) L Y l . . . L Y n  Mzl"'"n ( q I q 1 ,  * * * 9 q n q n )  = N a q l + . . . + q n , o M n  (71, * * 5 7"). 

Here N is the number of lattice sites and 

(2.10) 

The thermal average in (2.10) is taken with respect to the density operator 

po = exp(PhS')/Tr[exp(PhS')]. (2.1 1) 

Equations (2.9)-(2.11) show that the problem of evaluating the semi-invariants 
reduces to a single-site one. In 0 3 we proceed in the evaluation of these quantities with 
the help of the usual diagrammatic rules for fermion operators (Abrikosov et a1 1965). 
For this purpose we define the Green functions 

ct (7) = ( y [ C m  ( T I C  (0)1)0, OOb) = (n4(7)4(0)1)0. (2.12) 

Fourier transforms can be defined in the usual way (see I), and the corresponding 
Fourier coefficients are given by 

C$ ( a )  = (ia + 2"-'h)-', ~ ' ( a )  = 2(ia )-I, (2.13) 

where ia is an imaginary fermion frequency. In a diagrammatic representation 
- ( l /P )C: (a )  and - ( l /P )Do(a )  will be drawn as a solid line (with index m )  and a 
broken line respectively, as in I. The semi-invariant A4z" . O L n  (ql, . . . , 77,) will be equal 
to the sum of all connected diagrams, in the frequency representation, that can be 
formed from the vertices a1, . . . , an. 

3. Evaluation of the semi-invariants 

In this section detailed considerations of the structure of the diagrams forming the 
semi-invariants lead to an inductive procedure for their evaluation in terms of the 
generalised drone-fermion representation. By this means all semi-invariants up to 
fourth order are evaluated for any spin value S given by (1.1). In the evaluation we 
distinguish three classes of semi-invariants: longitudinal, transverse and mixed, 
according to the type of vertices involved. 

3.1. Longitudinal semi-invariants 

These are formed only from (2)-type vertices. The lowest-order longitudinal semi- 
invariant is M ;  (vl) and from (2.11) we have simply 

Mi (771) = a,,*oRo (3.1) 
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where 

and 

f m  = <c",cm), = [exp(-2"-lph) + 11-l. (3.3) 

It is a matter of elementary transformations to show that, for the corresponding spin 
value S given by (1. l), Ro can be written as 

R o = ( S + i )  coth[(S+$)ph]-$coth(~ph) (3.4) 

as expected. Let us consider now a general (A + 1)-order longitudinal semi-invariant, 
(A 3 1). From the discussion following (2.13) and the form of the S' operator, (1.2), we 
conclude that 

(3.5) 

where Pyi iz(m) is represented diagrammatically in figure 1. The factorial A ! in (3.5) 
takes into account all diagrams similar to that of figure 1 which result from making all 
possible permutations of A vertices (one vertex has to be regarded as fixed). Applying 
the usual diagrammatic rules for fermion operators, we obtain 

A + l  

(3.6) 
1 

Pyii'(m) = ( - 1 ~ , , ~ , o .  . . a,,h+l.o ( -,cP,, ( a ) )  . 
a 

Figure 1. Definition of P?<iz(m) in the evaluation of A4i?iz(vi,. . . , v*+i). 

The frequency summation in (3.6) can be readily performed, and after substituting the 
result into (3.5) we find that 

(3.7) 

Denoting by R v l  the Ath derivatives of Ro with respect to ph, and using (3.2) and (3.3), 
equation (3.7) can be rewritten as 

(3.8) [ A I  Myii' (771, . . , T A + ~  = &,ll,o . . Srlhfl,oRo - 
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3.2. Transuerse semi-invariants 

These are formed from pairs of (+), (-) vertices. The lowest-order transverse semi- 
invariant NI;- (rll, T ~ )  can be expressed as 

where P:-(m) is defined in figure 2a. The term in the above expression takes 
into account all possible connected and disconnected contractions between the fermion 
operators of Ah, (1.6)> appearing in the representation of S', (1.3), with the cor- 
responding operators appearing in the representation of S - ,  (1.4). The factorisation of 
the diagrammatic contributions shown in (3.9) is more easily understood in the T 
representation. In this representation we shall have a term (F[Ah( . r~)Ak( . rz )] )~  which 
for any 7 1 ,  7 2  is equal to ((A;)')o. Thus, transforming to the frequency representation, 
this term will appear just as a multiplicative factor. It is worth emphasising that all 
diagrams summed in (3.9) are connected because P:-(m) in figure 2a is connected. 

Proceeding in the evaluation of M ; - ( q 1 9  T ~ ) ,  we shall prove first by induction that 
I 

'11 
J. 

I 
I 
I 
\ 

'1 I J  'I, -'I 

Figure 2. Evaluation of M;-(711, T ~ ) :  ( a )  P;- (m) ;  ( b )  P i - ( l ) ;  (c) P ; - ( m + l )  as a 
convolution. 
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For m = 1 figure 2a reduces to figure 2b, and it can be verified directly that 

(3.11) 

Thus (3.10) is valid for m = 1. We assume now its validity for a given m and consider the 
m -t 1 case. As shown in figure 2c, the m i- 1 diagram can be considered as a frequency 
convolution of two diagrams, the first of which is just P;-(l) of figure 2b, whilst the 
second has the same structure as P i - i m )  of figure 2a but with each Cy line replaced by 
Cyti. Noting that the above replacement is equivalent to replacing h by 2h (see 
equation (2.13)), we may use the assumption of induction and (3.11) to write 

The frequency summation in (3.12) can be readily performed, and after some re- 
arrangement we obtain 

1 
f11/3(h - iql) '  

fm+l ) fm . . (3.13) 

Thus (3.10) is valid also for the m + 1 case and the proof of it is completed by induction. 
Substituting (3.1 0) into (3.9) and using the algebraic identity ( A l . l )  of appendix 1, we 
obtain finally the expression 

It is worth mentioning that the result of equation (3.14) can alternatively be derived 
by working in the 7 representation. Nevertheless, we have chosen to follow the rather 
lengthy induction procedure because it can straightforwardly be adapted to the 
evaluation of the mixed semi-invariants, as illustrated in the next subsection. 

In principle, the next higher-order transverse semi-invariant Mi-+-  can be derived 
in a similar manner to M i - ,  but it is more convenient to make use of the relation 

(3.15) 

The quantity Mi-' appearing in (3.15) is a mixed semi-invariant which is defined and 
evaluated in the next subsection, giving 

(3.16) 

The ,justification of (3.15) is most easily accomplished using general properties of spin 
operators (Izyumov and Kassan-Ogly 1970) together with our definition of the 
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semi-invariants, as shown in appendix 2. Combining (3.14)-(3.16), we obtain the result 

Mi-+- (771,772,773,774) 

(3.17) 

3.3. Mixed semi-invariants 

The mixed semi-invariants involve both (2)-type vertices and pairs of (+), (-) vertices. 
In their evaluation it is convenient to isolate those parts which correspond to zero 
outgoing frequency at the ( z )  vertex points. These parts can be more easily expressed 
via the identity 

An elementary proof of (3.18) valid for any spin value S is given in appendix 3 of this 
paper. For an alternative proof we refer to Stinchcombe et a1 (1963). Within the 
context of the drone-fermion method, equation (3.18) has a simple diagrammatic 
interpretation also discussed in appendix 3. Using (3.18), the mixed semi-invariant 
Ml-' can be expressed as 

M;-= (771, 772,773) = (1 - 6v3,0)M;-* (771, 772, 773 f O)+S.,,O aMt-  (772,772)l" 

(3.19) 

+ 2m-1  x -. 3 

c 
'11 

Figure 3. Definition of P;-'(m) in the evaluation of M$-*(ql ,  q2, q 3  ZO). 

Thus we need only consider the diagrams contributing to Ml-' (ql, q2, 773 # 0). Noting 
that contractions of a c:, ( T ~ ) c "  ( T ~ )  operator with A G , , ( T ~ ) A ~ , , ( T ~ )  are 7-independent in 
the T representation, and hence proportional to S173,0 in the frequency representation, 
we conclude that 

(3.20) 

Here Pi-' ( m )  is defined as the series of diagrams of figure 3 which can be obtained from 
that of figure 2a by attaching a ( 2 )  vertex point on each of the CL, lines in turn 
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(m' = 1,2,  . , , , m) and including the appropriate weighting factors that result from 
(1.2). By an induction proof similar to that of (3.10), one can show that for 773 # 0 

(3.21) 

Combining (3.19)-(3.21) and using (3.14) and the identity (Al.l), we obtain the 
expression for M : - ' ( T ~ ,  7 2 ,  q3) already quoted in (3.16). 

The evaluation of the next higher-order mixed semi-invariant Ml-" proceeds 
along the same lines. Using (3.18) we may write 

Mi-= (771, 772, 773, 774) 

= (1 - 8q3,0)(1 - &4,0)M:-ZZ (771, 772, 773 # 0,  774 # 0 )  

(3.22) 

From arguments similar to those leading to (3.20) we conclude that 
n 

M i A Z Z  ( m , m  773 f 0,774 f 0 )  = ((A32)oP4'-z'(m) (3.23) 

where Pi-"(m) is expressed diagrammatically in figure 4. We note that the diagrams 
of figure 4 can be formed from those of figure 3 by attaching the extra (2) vertex point in 
all possible topologically distinct positions and including the appropriate weighting 
factors. By an induction proof one can verify that for q3 # 0 and 774 # 0 

Pi -Zz(m)  = 8'11+'1~+?3+'14.0 

m = l  

Using (3.14) and (3.16), equations (3.22)-(3.24) may be combined to give 

M:-ZZ (771, 772, 773,774) 

where the identity (Al . l )  has been used once more. 

4. Discussion 

(3.24) 

(3.25) 

Once the evaluation of the semi-invariants is completed, the subsequent rules for 
developing the perturbation expansion of any time-ordered cumulant spin average or of 
the free energy of the system, using the generalised drone-fermion method, are 
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I x  

+ P X  

t 2m-' x 

p - 1  
I 

\ 
\ 

Figure 4. Definition of P;-"(m) in the evaluation of M ~ - z z ( q l ,  v2, q 3  # 0,  q4# 0) .  

equivalent to those used in the semi-invariant technique of Vaks et a1 (1968), and may 
be summarised as follows. 

(i) Draw all the appropriate connected diagrams formed by n-point vertex functions 
joined with interaction lines. Label the diagrams so that the total frequency and 
momentum are conserved at each n -point vertex function. 

(ii) Associate a factor NMEi,,,mn (ql, , , . , qn) with each n-point vertex function, 
where 771,. . . , q,, are the boson frequencies leaving the vertex points a l , .  . . , a, 
respectively. 

(iii) Associate a factor p J ( q ) / 2 N  or P J ( q ) / N  with each interaction line carrying a 
momentum label q and joining a (+) to a (-) vertex point or two ( z )  vertex points 
respectively, where 

1 Z ) ( T ~ ~ ) = - C J ( ~ )  exp(--iq-rzj). (4.1) 
N ,  

(iv) Associate a factor l / p  with each diagram, where p is its symmetry factor. 
(v) Sum over all internal frequency and momentum labels within the restrictions 

imposed by (i). 
So far in both techniques the parameter of smallness used to classify the diagrams 

has been l/z, where z is the number of spins interacting with any given spin. The rule 
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for determining the l / z  dependence of any diagram is (Cottam and Stinchcombe 1970) 
that each independent momentum label which appears in an interaction line, and is 
eventually summed over, gives rise to a l / t  factor. The lowest-order (l/t)' renor- 
malisation of the semi-invariants leads to the replacement in all expressions of the 
external field h by the self-consistent moiecular field y = h +RoJ(O). Explicitly this is 
accomplished in slightly different ways for each formalism. Within the context of the 
drone-fermion method, we renormalise to order (l/t)' the individual C:n lines, 
essentially as in I, since the Do lines have no self-energy parts to this order. For the 
corresponding procedure followed in the semi-invariant technique we refer to Stinch- 
combe (1973). In the Vaks et a1 (1968) approach, the (l/z) '  renormalisation is 
automatically incorporated in the formalism by including in the unperturbed Hamil- 
tonian 2Y0 the mean field part of the Heisenberg interaction. 

The generalised drone-fermion method and the semi-invariant technique will 
clearly give rise to equivalent results. However, the former method is restricted to spin 
values given by (1.1). These, nevertheless, include all ferroelectrics described by a 
pseudo-spin Heisenberg model and many important ferromagnetic materials (e.g. Cr 
compounds for S = 3 and Eu compounds for S = z) .  
Appendix 1. 

Here we present the proof of the following useful algebraic identity: 

We start from the commutator relation 

[S', s-] = 2s' (A1.2) 

which may be rewritten in terms of the drone-fermion representation (1.2)-(1.4) as 

(A1.3) 

In view of the identities ( b 2  = 1 and cmc; +c;cn, = 1, equation (A1.3) is equivalent to 

(A1.4) 

The identity (Al . l )  follows now from (A1.4) by taking the thermal average (. . .)o, with 
respect to pu, of both sides and using (3.2), (3.3) as well as the fact that the operator 

depends only on c,fcn, . . . , c;+lcm.+l (see (1.6)). 
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Appendix 2. 

In this appendix we make use of an important identity for spin operators, established by 
Izyumov and Kassan-Ogly (1970), in order to justify equation (3.15). In fact, from 
equation (2.10) of their paper we have 

(~[s'(~i)s-(72)s'(~,)S-(74)3)0 

= 2G(72 - 7.s)(~[s'(~i)s-(74)sz (73)I)o 

-t 2G(72-71)(~[Sf(73)S-(74)SZ(71)1)0 (A2.1) 

where the G function is defined by 

Using (3.14) one can easily verify the relation 

M i -  (71, 72) = ~ R o G ( ' T ~  - 71). (A2.3) 

From (A2.1), (A2.3) and our definition (2.7) for the M4f-'- and Ml-' semi-invariants 
in the T representation, it follows that 

Ml-'- (71, 7 2 ,  7 3 ,  74) = [Ml-' (71, 74, 73)M:- ( 7 3 ,  7 2 )  

4- Mi-' ( 7 3 ,  74,  7i)M:- (71, 72)]/R0. (A2.4) 

Equation (3.15) now is just the frequency representation of (A2.4). 

Appendix 3. 

In this appendix we give a proof of equation (3.18) valid for any spin value S .  We 
consider only the case when the sum of the frequencies in (3.18) is zero, since otherwise 
both sides vanish identicaly. From (2.11) we have 

aPo /a (Ph)  = P0SZ - P o ( S ' ) o  (A3.1) 

and on taking the derivative with respect to ph of both sides of (2.10) we may write 

- ( S z ) 0 l j d d ; - I .  . . 0 J'd.i,(Y(fi i = l  S " ~ ( T ~ ) ) )  0 i = l  fi exp(ivrTi) 
P o  

(A3.2) 

In the first term of (A3.2) we have taken into account all possible orderings of the S" 
operator with respect to the other operators. An additional term resulting from the 
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dependence of the S L L ( 7 )  operators on Ph can be easily shown to vanish under the 
assumption of zero frequency sum. Using (2.10), (3.1) and (3.2) equation (A3.2) can be 
written as 

l o  B P 
- - - jo dT1 . . . Io dT, lo dT (( fi s " ~ ( q ) S ' ( ~ ) ) )  fi exp(iqiTi) 

Pni1 i = l  0 i = l  

Ma,',-.Mm, , , . M"'% - M ; ( q  =o) (M~ l . . . "~ l (q l , . . . , qn )+  m , + m z +  ...+ m k = n  
mk  1 

-- 1 MZ;:;"Mm, . . *  M"'".. (A3.3) 

For n = 1 equation (3.18) is valid, as the right-hand side of (A3.3) will just be equal to 
MZ1' (ql, 0). Assuming the validity of (3.18) for all semi-invariants of order smaller 
than or equal to n - 1, we can easily conclude from (A3.3) that its right-hand side will be 
equal to (ql, . . . , qn, 0), and so the proof of (3.18) is completed by induction. 

Within the context of the generalised drone-fermion method, it is possible to give an 
alternative proof of (3.18) which assists in a simple diagrammatic interpretation. As 
mentioned at the end of 8 2, the semi-invariant ME".'". (ql, . . . , 7,) consists of all 
connected diagrams that can be formed from the vertices c y 1 , .  . . , cy,. Thus its Ph 
dependence results only from the C i  lines, as the D o  lines do not depend on Ph, (2.13). 
We can easily verify that 

a 
mk d(Ph) m l + m 2 +  ...+ m k = n  

(A3.4) 

Diagrammatically, equation (A3.4) is represented in figure 5. We see that the effect of 
the derivative d/d(Ph) on each C i  line is to create a ( 2 )  vertex point with zero outgoing 
frequency, and so (3.18) follows. This interpretation is also useful because it provides 
the link between the (l/z)O renormalisation procedure as achieved in the semi- 
invariant approach (Stinchcombe 1973) and the generalised drone-fermion method (I). 

Figure 5. Diagrammatic representation of equation (A3.4). 
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